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SUMMARY

In this paper, a numerical convergence study of family of �ux-continuous schemes is presented. The
family of �ux-continuous schemes is characterized in terms of quadrature parameterization, where the
local position of continuity de�nes the quadrature point and hence the family. A convergence study is
carried out for the discretization in physical space and the e�ect of a range of quadrature points on
convergence is explored. Structured cell-centred and unstructured cell-vertex schemes are considered.
Homogeneous and heterogeneous cases are tested, and convergence is established for a number of
examples with discontinuous permeability tensor including a velocity �eld with singularity. Such cases
frequently arise in subsurface �ow modelling. A convergence comparison with CVFE is also presented.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Rapid variation in permeability is common in oil reservoirs where permeability coe�cients
can jump by several orders of magnitude. Continuity of �ux and pressure at local physical
interfaces between grid blocks with strong discontinuities in permeability are fundamental
laws that must be built into the discrete scheme approximation of the pressure equation.
A family of �ux-continuous, locally conservative, �nite volume schemes has been developed

for general geometry-permeability tensor pressure equation, on structured and unstructured
grids [1–8]. In these schemes discrete �ow variables and rock properties including permeability
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tensors are assigned to control-volumes so that the schemes are control-volume distributed
or CVD. Flux-continuous schemes are also presented in References [9–14] where they are
called as multi-point �ux approximation schemes or MPFA. Similar schemes are also presented
in References [15, 16]. The schemes are applicable to the diagonal and full tensor pressure
equation with generally discontinuous coe�cients and remove the O(1) error introduced by
standard reservoir simulation schemes when applied to full tensor �ow approximation. Mixed
�nite element methods and discontinuous Galerkin have also been developed for the �ow in
porous media, e.g. References [17–21].
This paper addresses the numerical convergence for the family of �ux-continuous schemes

developed by Edwards and Rogers [1] in physical space [3, 4] for a range of quadrature
points. The underlying principle of the family of �ux-continuous schemes is the continuity
of normal �ux and pressure. Advantages of the family of �ux-continuous schemes in terms
of sensitivity to cross-�ow and improved performance were noted in References [5, 22]. In
this paper, results are presented for a number of cases and numerical convergence of the
scheme is presented. It is also shown how the use of speci�c quadrature points improves
the convergence of the numerical scheme. Earlier results have been presented for numerical
convergence of the basic MPFA O-method (which is one of the family of �ux-continuous
schemes) on general quadrilateral grids in transform [1] and physical space [14]. The numer-
ical schemes for the convergence study are presented here using a cell-centred CVD formu-
lation for quadrilateral grids and a cell-vertex polygonal CVD formulation for unstructured
grids.
This paper is organized as follows: Section 2 gives a description of the single phase �ow

problem encountered in reservoir simulation with respect to general tensor pressure equation.
Section 3 presents an overview of the �ux-continuous formulation starting in 1-D followed
by classical �ve-point scheme in 2D and the generalization of the �ux-continuous scheme for
structured and unstructured grids, with discretization of the scheme in physical space. Section 3
also reviews the family of �ux-continuous schemes and the e�ects of using di�erent quadrature
points. Section 4 presents the numerical convergence results for the family of schemes for
a range of quadrature points with the help of a series of numerical examples with varying
degrees of roughness coe�cients. In Section 5 convergence of the family of �ux-continuous
schemes is considered in terms of an up-scaling example on structured and unstructured grids.
Section 4 presents the conclusion of the convergence study.

2. THE PROBLEM DEFINITION

2.1. Cartesian tensor

The problem is to �nd the pressure � satisfying

−
∫
�

∇ •K(x; y)∇� d�=
∫
�
q d�=m (1)

over an arbitrary domain �, subjected to suitable (Neumann=Dirichlet) boundary conditions
on boundary @�. The right-hand side term m represents a speci�ed �ow rate and ∇=(@x; @y).
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Matrix K can be a diagonal or full Cartesian tensor with general form

K=

(
K11 K12

K12 K22

)
(2)

The full tensor pressure equation is assumed to be elliptic such that

K2126K11K22 (3)

The tensor can be discontinuous across internal boundaries of �. The boundary conditions
imposed here are Dirichlet and Neumann. For incompressible �ow pressure is speci�ed at
atleast one point in the domain. For reservoir simulation, Neumann boundary conditions on
@� requires zero �ux on solid walls such that (K∇�) · n̂=0, where n̂ is the outward normal
vector to @�.

2.2. General tensor equation

The pressure equation is de�ned above with respect to the physical tensor in the initial
classical Cartesian co-ordinate system. Now we proceed to a general curvilinear co-ordinate
system that is de�ned with respect to a uniform dimensionless transform space with a (�; �)
co-ordinate system. Choosing �p to represent an arbitrary control-volume comprised of sur-
faces that are tangential to constant (�; �), respectively, Equation (1) is integrated over �p
via the Gauss divergence theorem to yield

−
∮
@�p

(K∇�) · n̂ ds=M (4)

where @�p is the boundary of �p and n̂ is the unit outward normal. Spatial derivatives are
computed using

�x= J (�; y)=J (x; y); �y= J (x; �)=J (x; y) (5)

where J (x; y)= x�y� − x�y� is the Jacobian. Resolving the x; y components of velocity along
the unit normals to the curvilinear co-ordinates (�; �), e.g. for �=constant, n̂ ds=(y�;−x�) d�
gives rise to the general tensor �ux components

F = −
∫
(T11�� + T12��) d�; G= −

∫
(T12�� + T22��) d� (6)

where general tensor T has elements de�ned by

T11 = (K11y2� + K22x
2
� − 2K12x�y�)=J

T22 = (K11y2� + K22x� − 2K12x�y�)=J
T12 = (K12(x�y� + x�y�)− (K11y�y� + K22x�x�))=J

(7)

and the closed integral can be written as∫ ∫
�p

(@�F̃ + @�G̃)
J

J d� d�=��F +��G=m (8)
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where, e.g. ��F is the di�erence in net �ux with respect to � and F̃ = − (T11�� + T12��),
G̃= − (T12�� + T22��). Thus, any scheme applicable to a full tensor also applies to non-
K-Orthogonal grids. Note that T11; T22¿ 0 and ellipticity of T follows from Equations (3)
and (7). Full tensors can arise from up-scaling, and orientation of grid and permeability �eld.
For example, by Equation (7), a diagonal anisotropic Cartesian tensor leads to a full tensor
on a curvilinear orthogonal grid.

3. FLUX CONTINUOUS APPROXIMATION

The key to any �nite volume formulation lies in working with the integral form of �ow equa-
tions. The Gauss divergence theorem is applied locally to the volume integral of divergence
over each control-volume. A unique discrete �ux is then assigned to each control-volume face
and each closed integral is approximated by sum of discrete outward normal �uxes. For a
given face which is common to two neighbouring control-volumes, a unique �ux is added to
left-hand control-volume while the same �ux is subtracted from the right-hand control-volumes
leaving only the sum of global domain boundary �uxes. Thus, the �ux-continuous schemes
considered here are locally conservative. The construction of the �ux-continuous scheme is
given below.

3.1. Flux-continuous approximation in 1D

We begin with classical cell-centred formulation in one dimension where pressures and per-
meabilities are de�ned with respect to cell centres. In this case, Equation (1) reduces to

−
∫
(K(x)�x)x dx=m (9)

Integration of Equation (9) over the cell i (referring to Figure 1) results in the discrete
di�erence of �uxes

Fi+1=2 − Fi−1=2 =m (10)

where m is a �ow rate, Fi+1=2 = − K@�=@x and the derivative remains to be de�ned. If the
coe�cient K is su�ciently smoothly varying it is possible to use linear interpolation between
the centres of cells i and i + 1 and approximates the �ux by

Fi+1=2 = − Ki+1=2(�i+1 − �i)=�x (11)

where Ki+1=2 is a suitable average of the adjacent cell-centred permeabilities. However, if K
is discontinuous then since normal �ux and pressure are continuous the pressure gradient is

Figure 1. One-dimensional cell-centred and cell-face pressures.
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discontinuous and linear interpolation is not valid across the cell faces. The standard solution
to this problem is described in Reference [23]. Continuous pressure and normal �ux are
incorporated in the cell-centred approximation by introducing a mean pressure �f at a cell face
dividing neighbouring cells (Figure 1). Equating the resulting one-sided �ux approximation
at the cell face results in

−Kr(�r − �f )=�xr = − Kl(�f − �l)=�xl (12)

which ensures �ux continuity. From Equation (12) cell-face pressure is given by

�f = (�lKl=�xl + �rKr=�xr)=(Kl=�xl + Kr=�xr) (13)

which is back-substituted into the discrete �ux equation (12) to yield the classical cell-face
�ux approximation

F = − 2KrKl(�r − �l)=(Kr�xl + Kl�xr) (14)

3.2. Flux-continuous approximation in 2D classical �ve-point scheme

As in one dimension pressures and permeabilities have a cellwise distribution and cells act
as control-volumes. The equivalent 2D discontinuous diagonal tensor �ve-point scheme on
rectangular grid is derived by introduction of interface pressures and a sub-cell triangular
support as indicated in Figure 2(a). As in one dimension cell-face pressures are eliminated
in the �ux continuity conditions to yield the classical �ve-point scheme with harmonic mean
coe�cients in two dimensions, further details of the scheme can be found in Reference [1].
The support for the classical �ve-point scheme is shown in Figure 2(b), and it shows that
introduction of cell-face pressures (�f = (�N; �S; �E; �W; )) enables the normal velocity and
pressure to be pointwise continuous at the cell faces.

3.3. Full tensor �ux approximation

Continuous normal �ux and pressure discretization of the reservoir simulation pressure equa-
tion is required in order to honour correct local physical interface conditions between grid

Figure 2. (a) Imposing continuity between the grid blocks in a �ve-point scheme; and (b) cell-centred
�ve-point support on a Cartesian grid.
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blocks with strong discontinuities in permeability. A consistent full tensor �ux approxima-
tion requires an increase in support compared to the standard two-point �ux. In general,
a nine-point scheme is required for approximation of Equation (1) in two dimension as
shown on a Cartesian or quadrilateral grids with full=diagonal tensor in Figures 3 and 4(a),
respectively. Here we review the derivation of the family of �ux-continuous schemes presented
in References [1, 2]. Emphasis is on the comparison and bene�ts of di�erent quadrature points
(explained in Section 3.5 below) that belong to the family of �ux-continuous schemes derived
in physical space. There are multiple motivations for a family of schemes for both full and
diagonal tensor formulations and these are stated below. This is followed by a presentation
of the quadrature parameterization on which the schemes are based.

3.4. Motivation for the family of schemes

The motivation for the family of �ux-continuous schemes and �exibility in location of quadra-
ture point with 0¡q6 1 is to allow for improvement in accuracy, e.g. q=1=2 yields a sig-
ni�cant gain in accuracy with order O(h6) truncation error for the Laplacian operator and
O(h4) for an anisotropic diagonal tensor [1]. A nine-point scheme will also reduce grid ori-
entation e�ects [22] and �ux-continuous nine-point schemes can improve up-scaling even in

Figure 3. Full tensor pressure support with standard default quadrature point q=1.

Figure 4. (a) Nine-point scheme support; (b) nine-point continuous pressure support shaded, quadrature
q=1=2; and (c) highlighted dual-cell.
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the case of a diagonal tensor by detecting cross-�ow [5]. Variable q can also improve diagonal
dominance of the full tensor approximation [1].

3.5. Quadrature parameterization—physical space

The most primitive member of the family of schemes (illustrated in Figure 3) corresponds to
the quadrature point position coincident with the cell-face mid-point, i.e. q=1. This is called
one-sided quadrature, since, in this case, a diagonal tensor formulation will only involve
two pressures from the four pressures (�i; j; �i+1; j ; �i+1; j+1; �i; j+1), resulting in a two-point
�ux, and the basis functions reduce to right-angled triangles on a Cartesian grid. In this
case, a six-point �ux will only result when a full tensor is present. The general cell-centred
�ux-continuous schemes support is shown in Figure 4(a) with a nine-point support centred
at i; j. A set of �ux continuity conditions are imposed inside each dual-cell, where dual-cells
are de�ned by joining cell centres to cell edge mid-points surrounding primal grid vertex as
indicated by dashed lines in Figure 5(a). For a given dual-cell, the position of continuity
can be chosen to lie at any point between the mid-point of a cell face and an adjacent grid
cell vertex at the corner of the control-volume shown in Figure 5(b). The continuity position
determines the scheme quadrature, consequently the co-ordinates of the continuity position N,
S, E, W de�nes a whole family of �ux-continuous nine-point schemes for a diagonal or full
tensor equation. The co-ordinate system of a physical cell is illustrated in Figure 5, and is
parameterized in terms of q (0¡q6 1), where the origin (q=0) is the top right-hand corner
of the cell and q=1 is the cell-face mid-point, and is given as, e.g.

r= r3 +
q
2
(�r23) (15)

where

�r23 = ((x2 − x3); (y2 − y3)); r2 = (x2; y2); r3 = (x3; y3) (16)

3.6. Formulation of scheme in physical space

Here, we now consider the full tensor �ux approximation. Note that while normal �ux is
continuous across an interface tangential �ux can be discontinuous. With respect to each dual-
cell primal grid cell-face pressures �f = (�N; �S; �E; �W; ) are introduced at the (N,S,E,W)
locations indicated in Figure 6(a), and lie inside each dual-cell. A local triangular support is
introduced within each quarter of the dual-cell (sub-cell) as shown in Figure 6(b). Pressure �
and the cell co-ordinates assume a piecewise linear variation over each triangle, for example,
over the triangle of cell 1 (Figure 6(b))

�= ��S + ��W + (1− �− �)�1
x= �xS + �xW + (1− �− �)x1
y= �yS + �yW + (1− �− �)y1

(17)

(�; �) are area co-ordinates and (xS; yS), (xW; yW) are local continuity co-ordinates and pressure
is piecewise continuous over each triangle. The point of continuity on the cell face de�nes
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Figure 5. (a) Dual-cell—dashed line: �ux and pressure continuity at N, S, E, W, quadrature
q=1=2; (b) local cell co-ordinate system with q=0:5; (c) local cell co-ordinate system with q=0:1;

and (d) local cell co-ordinate system with q=1.

Figure 6. (a) Dual-cell—dashed line: �ux and pressure continuity at N, S, E, W, quadrature q=1=2;
and (b) sub-cell of the dual-cell with pressure support.
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the quadrature type. Sub-cell gradients are calculated using Equation (5) and (17) for triangle
(1,S,W) leading to a well-known piecewise constant gradient in physical space where

(
��

��

)
=

(
�S − �1
�W − �1

)
(18)

and (
x�

x�

)
=

(
xS − x1
xW − x1

)
;

(
y�

y�

)
=

(
yS − y1
yW − y1

)
(19)

Using Equations (5), (18) and (19) the discrete Darcy velocity is de�ned as

vh= −K∇�h (20)

where K is the local permeability tensor of cell 1 and the normal �ux at the left-hand side
of S (Figure 6(a)) is resolved along the outward normal vector dLS = (�yr3 ;S;−�xr3 ;S)=
1
2(�y32;−�x32) (Figure 6(b)) and is expressed in terms of the general tensor T as

F1S = vh · dLS = 1
2(T

1
11�� + T

1
12��)|1S (21)

where it is understood that the resulting coe�cients of 1
2 (��; ��)|1S are denoted by T11|1S and

T12|2S and are sub-cell approximations in physical space, of the general tensor components
given in Equation (7) at the left-hand face of S. A similar expression for �ux is obtained at
the right-hand side of S from cell 2 (Figure 6(b)). Similarly, sub-cell �uxes are resolved on
the two sides of the other faces at W, N and E. Flux continuity is then imposed across the cell
interfaces at the speci�ed positions N, S, E and W (Figure 6(a)) for a speci�ed quadrature
point q (Section 3.5 above). Using these positions of continuous pressure (N,S,E,W) as the
�ux quadrature points, and for cells 1–4 sharing a common grid vertex (Figure 6(a)), the �ux
continuity conditions are written as

FN =− 1
2 (T11�� + T12��)|3N = − 1

2 (T11�� + T12��)|4N
FS =− 1

2 (T11�� + T12��)|1S = − 1
2 (T11�� + T12��)|2S

FE =− 1
2 (T12�� + T22��)|2E = − 1

2 (T12�� + T22��)|3E
FW =− 1

2 (T12�� + T22��)|1W = − 1
2 (T12�� + T22��)|4W

(22)

The above system of equation yields

F =AL�f + BL�v =AR�f + BR�v (23)

where �f = (�N; �S; �E; �W; ) represents interface pressures. Similarly, �v = (�1; �2; �3; �4; )
represents cell-centred pressures. Thus, the four interface pressures are expressed in terms
of the four cell-centred pressures. From Equation (23) �f is eliminated to obtain the �ux
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coe�cient matrix given as

F =(AL(AL − AR)−1(BR − BL) + BL)�v (24)

This illustrates a key advantage of the method as in one dimension, the cell-face pressures
are determined locally in terms of the cell-centred pressures in a preprocessing step, thus
avoiding introduction of the interface pressure equations into the assembled discretization
matrix. Therefore, �ux continuity in the case of a general tensor is obtained while maintaining
the standard single degree of freedom per cell. Since the continuity equations depend on both
�� and �� (unless a diagonal tensor is assumed with cell-face mid-point quadrature resulting
in a two-point �ux), the interface pressures �f = (�N; �S; �E; �W; ) are locally coupled and
each group of four interface pressures is determined simultaneously in terms of the four
cell-centred pressures whose union contains the continuity positions.

3.7. Discrete �ux approximation for structured grids

Once the �ux coe�cient matrix has been calculated (Equation (24)) the discrete scheme
is de�ned by approximating Equation (8) with the sum of eight �uxes, two per control-
volume quadrant as in Figure 7(a), the top right-hand dual-cell has index i + 1=2; j + 1=2.
The net �ux for the respective right-hand side and top cell faces (in a global assembly) is
given by

Fi+1=2; j = FNi+1=2; j−1=2 + FSi+1=2; j+1=2

Fi; j+1=2 = FEi−1=2; j+1=2 + FWi+1=2; j+1=2 (25)

Finally, the discrete scheme is completed by de�ning the closed integral of net �ux over
the control-volume (i; j) which results in

Fi+1=2; j − Fi−1=2; j + Fi; j+1=2 − Fi; j−1=2 =M (26)

Figure 7. Control-volume quadrant �uxes on a Cartesian grid.
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where M is the speci�ed �ow rate. It should also be noted here that for any quadrature point
q, other than the cell-face mid-point (q=1), a nine-point �ux-continuous scheme is always
obtained regardless of whether the tensor is full or diagonal.

3.8. Formulation in transform space

The physical space tensor resulting from normal resolution of velocity will not in general be
symmetric, i.e. T 112|S �=T 112|W, and the resulting discrete matrix is non-symmetric. Alternative
formulations that yield a symmetric positive de�nite discrete matrix can be derived in trans-
form space, where the local general tensor T assumes a piecewise constant approximation
over the control-volume cell [1] or is piecewise constant over the sub-cells of each control-
volume [6, 7]. These formulations introduce additional approximations in geometry, the latter
[6, 7] are proving to introduce less error than the former, consistent with being de�ned on the
sub-grid scale [24]. A convergence comparison between physical and transform space formu-
lation for the former case is presented in results section and it shows that the approximation
of geometry introduces a second-order error.

3.9. Formulation of scheme in physical space—unstructured grids

This section presents a brief summary of the formulation of �ux-continuous schemes for
unstructured grids. In this case, pressures and permeabilities are vertex centred. A control-
volume is constructed around each vertex by joining cell edge mid-points to cell centres for
all cells common to a given vertex. The physical permeability is assigned to the control-
volume. Using an analogous procedure to that for the structured grids the �ux continuity
formulation is carried over directly to treat unstructured triangular grids [2]. For a triangular
grid three �ux continuity conditions are imposed within each triangle where a local co-ordinate
system is associated with each sub-cell of a given triangle, Figure 8(a). Interface pressures
�f = (�N; �S; �E) are introduced in a similar fashion to Section 3.2 and three sub-cell triangular
basis functions are formed joining vertex pressures �v = (�1; �2; �3) with adjacent interface
pressures �f . The pressure assumes a piecewise linear variation over each sub-cell triangle
and the derivatives �x and �y are linear functions of �f and �v.

Figure 8. (a) Control-volume, �ux and pressure continuity positions at N, S, E shown on a triangle,
quadrature q=1=2; and (b) sub-cell triangular basis functions and �uxes at interface.
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3.10. Discrete �ux approximation for unstructured grids

Similar to the structured case the system of �uxes for unstructured grids are rearranged in the
form

F =AL�f + BL�v =AR�f + BR�v (27)

where �f = (�N; �S; �E) represents the interface pressures for triangular grids. Similarly,
�v = (�1; �2; �3) represents cell-vertex pressures for triangular grids. Thus, the interface pres-
sures can now be expressed in terms of the cell-vertex pressures. From Equation (27) �f can
be eliminated to obtain the �ux coe�cient matrix as for structured grid and is given as

F =(AL(AL − AR)−1(BR − BL) + BL)�v (28)

After calculating the �ux coe�cient matrix the Gaussian integral of divergence over each
control-volume is obtained by global �ux assembly.

4. CONVERGENCE STUDY RESULTS

The aim of this study is to test the e�ect of quadrature point on convergence. While, numerical
convergence tests in transform space have previously been performed by Edwards and Rogers
in Reference [1] and Numerical convergence of MPFA O-method (default member of the
family of �ux-continuous schemes considered here, i.e. for q=1) have also been presented
by Eigestad et al. in Reference [14], a study of numerical convergence for the family of
�ux-continuous schemes in terms of a range of quadrature points has not previously been
presented.
In all cases the permeability �eld remains �xed under grid re�nement, ensuring that each

problem is invariant with respect to each grid level for the convergence study.

4.1. Convergence results on structured grids

In this section, convergence study results for the family of �ux-continuous schemes for a range
of quadrature points are presented (q=0:1, 0:5; 0:287; 1), where q=0:287 is Gauss quadrature
point. A numerical convergence study is performed for each of the domains illustrated in
Figure 9 where subdomain K1; : : : ; K4 indicates the variation in the permeability �eld. The
di�erent types of grid used are shown in Figure 10. The Discrete L2 norm is used to investigate
pressure and velocity errors, which is de�ned as

L2 =

(∑
i (Ai(p

analytical
i − pnumericali )2)∑

i Ai

)1=2
(29)

where Ai is the area of the grid cell i. The grid re�nement levels used for the L2 norm
calculation were 8× 8, 16× 16, 32× 32, 64× 64 and 128× 128 and were used for all test
cases.
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Figure 9. Di�erent subdomains with internal discontinuous permeabilities: (a) subdomain with disconti-
nuity along �=2�=3; (b) subdomain with discontinuity along �=�=3; (c) subdomain with discontinuity

along �=�=2; and (d) subdomain with discontinuity along �=2�=3.
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Figure 10. Di�erent grids used to test numerical cases: (a) unstructured trans�nite mesh aligned along
�=2�=3 discontinuity; (b) Cartesian mesh; (c) trans�nite mesh aligned along �=2�=3 discontinuity;

and (d) zig-zag grid honouring internal discontinuity.
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Example 1: The �rst example involves uniform �ow over a rectangular domain. The
medium is divided into two parts as shown is Figure 11(a). The permeability �eld is
discontinuous and permeability ratio is 1=10 across the medium discontinuity. The discontinuity
is aligned along the line rx+sy=0, where r= tan(�=3)=(1+tan(�=3)) and s=1=(1+tan(�=3)).
The pressure �eld is piecewise linear and varies as

�(x; y)=

{
rx + sy; rx + sy¡0

10(rx + sy); rx + sy¿0
(30)

The diagonal permeability tensor K= cI, where c=10 for rx + sy¡0 and c=1 for
rx+ sy¿0. The numerical solution shown in Figure 11(b) was obtained using a grid aligned
along the discontinuity. The numerical solution was found to be exact for any quadrature
point, which is a result of using piecewise linear variation in pressure over each sub-cell and
exact (physical space) geometry representation in the piecewise constant �uxes. On testing the
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Figure 11. (a) Medium discontinuity; (b) exact numerical pressure—physical space; (c) numerical
pressure convergence—transform space; and (d) numerical velocity convergence—transform space.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1177–1203



CONVERGENCE STUDY OF A FAMILY OF FLUX-CONTINUOUS, FINITE-VOLUME SCHEMES 1191

same example in transform space the order of convergence for pressure increased from h1:99

to h2:05 when quadrature point q moves from 1 to 0.1. The convergence rate for the normal
velocity was found to be of the order of h1:52 for q=1, h1:5 for q=0:5 and h1:45 for q=0.1.
The plots of numerical convergence of pressure and normal velocity in transform space are
shown in Figure 11(c) and (d). Further cases showing second-order convergence for pressure
in transform space are presented in Reference [8].
We comment here that similar cases were tested by Edwards and Rogers [1] and Eigestad

et al. [14]. Edwards and Rogers [1] obtained the exact solution for a discontinuous medium
when a uniform parallelogram grid is used (where T is exact), and second-order convergence
in transform space. Eigestad et al. used a random grid and obtained the exact solution in
physical space.
The aim of this paper is to investigate convergence of �ux-continuous schemes and exploit

the �exibility in quadrature point by testing for a possible optimal quadrature point of the
family of schemes. The above example shows that the uniform �ows are reproduced exactly
by the numerical scheme for any quadrature point. The following numerical examples test the
numerical convergence of the family of �ux-continuous schemes for a range of quadratures
for more challenging examples where an exact solution is available and where the scheme
cannot obtain an exact solution.
Example 2: This example is taken from Edwards and Rogers [1]. In this case, the pressure

�eld is piecewise quadratically varying over the domain shown in Figure 12. The domain
discontinuity is aligned along the line x=1=2, and the analytical solution is given by

�(x; y) =

{
clx2 + dly2; x¡1=2

ar + brx + crx2 + dry2; x¿ 1=2

K =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
50 0

0 1

)
; x¡1=2

(
1 0

0 10

)
; x¿ 1=2

�=K11|r=K11|l
�=K22|l=K22|l
ar = 1

f=4ar=((�− 2)�+ 1)
br = (� − 1)f
cr =f

dr =−crK11|r=K22|r
cl = ��cr

dl = dr

(31)
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The imposed top boundary �ux is also discontinuous at x=1=2, resulting in a discontinuous
tangential �ux across the domain. The computed numerical solution and the plots showing
L2 norm of pressure and velocity errors for the quadrature range (0¡q6 1) is shown in
Figure 13. For this test case the best numerical convergence for pressure and velocity was

Figure 12. Discontinuous tensor �eld.
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Figure 13. (a) Numerical pressure solution; (b) convergence of pressure with variable
quadrature points; (c) velocity convergence of velocity along X direction; and (d) velocity

convergence of velocity along Y direction.
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obtained for quadrature q=0:1, where numerical pressure solution converges in the discrete
L2 norm with order h2 and numerical velocity (Vx; Vy) converges with order h1:77 and h1:62,
respectively. For quadrature point q=0:5 the convergence rate of pressure is found to be of
the order of h1:98 and velocity converges with the order h1:77 and h1:64 in X and Y directions.
For quadrature point q=1 the convergence rate of pressure is of the order of h1:95 and the
velocity convergence with the order h1:78 and h1:68 in X and Y directions.
The next cases test the e�ect of discontinuous permeability with a corner in the �eld

upon convergence. In each of the following examples (examples 3–7) taken from Eigestad
et al. [14] and Riviere [25] the problem involves a rectangular domain with discontinu-
ous permeability variation as indicated in Figure 9. The exact solution in each case takes
the form

�(r; �)= r�(ai sin(�) + bi cos(�)) (32)

Di�erence between problems are in terms of strength of the coe�cients, permeability tensor
and orientation, which also determine the level of di�culty in each case.
Example 3: For this case analytical pressure solution is given by Equation (32) and

the domain discontinuity shown in Figure 9(c) has an internal angle �=�=2. The per-
meability tensor is given as Ki= kiI where ki is a scalar, for i=1; : : : ; 4, taking values
k1 = 5; k3 = k1 and k2 = 1; k4 = k1. Cartesian and zig-zag grids shown in Figure 10(b) and
(d) were used to test this problem. The coe�cients that describe the analytical solution are
given by

�=0:53544095

a1 = 0:44721360; b1 = 2:33333333

a2 =−0:74535599; b2 = 1:0

a3 =−0:94411759; b3 = 0:5555556

a4 =−2:40170264; b4 = − 0:481481481

(33)

The L2 norm of pressure and velocity errors along with the numerical pressure solution
obtained on a Cartesian grid are shown in Figure 14. Here, the best numerical convergence of
pressure and velocity on Cartesian grid was obtained for quadrature q=0:1, where numerical
pressure converges in the discrete L2 norm with order h1:0653 and numerical velocity (Vx; Vy)
converges with order h0:109 and h0:12, respectively. For quadrature point q=0:5 the convergence
rate for pressure is of the order of h1:02 and the numerical convergence for velocity in X and
Y direction is of the order of h0:082 and h0:081, respectively. The numerical convergence of
pressure for quadrature q=1 is of the order of h1:02 and the numerical convergence of velocity
is of the order of h0:068 and 0:063 in X and Y directions.
Using zig-zag=Chevron grids shown in Figure 10(d) the numerical pressure converges with

order h1:09 and numerical velocity converges with order h0:205 for quadrature q=0:1, whereas
for quadrature q=0:5 pressure convergence of the order of h1:12 and velocity convergence of
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Figure 14. (a) Numerical pressure solution; (b) convergence of pressure with variable quadrature points;
(c) convergence of velocity along X direction; and (d) convergence of velocity along Y direction.

the order of h0:186 was obtained and for q=1 the convergence rate was found to be of the
order of h1:07 for pressure and h0:175 for normal velocity. The plots of L2 norm for numerical
pressure and velocity errors for di�erent quadrature points using zig-zag grids is shown in
Figure 15.
Example 4: For this case analytical solution for pressure is given by Equation (32) and the

domain discontinuity is shown in Figure 9(c) with an internal angle �=�=2. The permeability
tensor is given by Ki= kiI where ki is a scalar, for i=1; : : : ; 4, taking values k1 = 100; k3 = k1
and k2 = 1; k4 = k1. This problem is tougher compared to the previous one as there a large
variation in permeability across the discontinuity and � value is small comparatively. The
problem is tested on Cartesian and zig-zag shown in Figure 10(b) and (d). The coe�cients
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Figure 15. (a) Numerical pressure convergence with variable quadrature; and (b) numerical velocity
convergence with variable quadrature.

that describe the analytical solution are given by

�=0:126902097221

a1 = 0:1; b1 = 1:0

a2 =−9:603960396; b2 = 2:960396040

a3 =−0:4803548672; b3 = − 0:8827565925
a4 = 7:701564882; b4 = − 6:456461752

(34)

L2 norm of pressure and velocity errors obtained on a Cartesian grid are shown in Figure 16.
The best numerical convergence for pressure and velocity on a Cartesian grid was again
obtained for quadrature q=0:1, where numerical pressure solution converges in the discrete
L2 norm with order h0:326 and numerical velocity (Vx; Vy) were found to be diverging. At
this time, while the reason for divergence of velocity is not clear, we note that velocity is
proportional to pressure gradient, and is therefore more sensitive than pressure in the presence
of a singularity. The divergence of velocity is also observed by Eigestad et al. [14]. The
convergence rate of pressure for q=0:5 and 1 is of the order of h0:194 and h0:166, respectively.
Using zig-zag=Chevron grids shown in Figure 9(d) the numerical pressure converges with
order h1:02, h0:285 and h0:287 for q=0:1, 0.5 and 1, respectively, showing a clear advantage
in pressure convergence when using q=0:1. However, velocity diverges. As before, such a
diverging behaviour of velocity is consistent with Eigestad et al. [14]. Figure 17 shows the
plots of numerical pressure and velocity convergence with variable quadrature points on zig-
zag grids. The pressure convergence results known for this test case from Eigestad et al. [14]
is of the order of h0:22.
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Figure 16. (a) Numerical pressure solution; (b) numerical convergence of pressure with variable
quadrature points; (c) numerical convergence of velocity along X direction; and (d) numerical

convergence of velocity along Y direction.

Example 5: In this case, analytical solution is given by Equation (32) and the domain
discontinuity is along the line 2�=3 shown in Figure 9(a). The domain is divided into two
parts with the permeability tensor Ki= kiI where ki is a scalar, for i=1; 2 taking values
k1 = 100 and k2 = 1. The grid used to test this case was aligned along the discontinuity. The
coe�cients that describes the analytical solution are given by

�=0:75472745

a1 = 1:0; b1 = 1:00995049

a2 = 100:980198; b2 = 1:99990197

(35)
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Figure 17. (a) Numerical convergence of pressure with variable quadrature; and (b) numerical
convergence of velocity with variable quadrature.
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Figure 18. (a) Numerical pressure solution; and (b) numerical pressure
convergence with variable quadrature.

For this test case a numerical convergence of pressure of the order is h1:523 was obtained for
quadrature point q=0:1 on the grid aligned along the discontinuity. The pressure convergence
for di�erent quadrature point is shown in Figure 18. The convergence for velocity was found
to be of the order of h0:75. On using the gauss quadrature point q=0:2887 the convergence
rate of pressure was found to be of the order of h1:87. It was found that gauss quadrature
points sometimes perform better in the case of smoother problems.
Example 6: Here, the analytical solution is given by Equation (32) and the domain discon-

tinuity is along the line 2�=3 as shown in Figure 9(d) with the permeability tensor Ki= kiI
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where ki is a scalar, for 1; : : : ; 4, taking values k1 = 100; k3 = k1 and k2 = 1; k4 = k1. The grids
used to test this case were aligned along the discontinuity. The coe�cients that describe the
analytical solution are given by

�=0:13448835

a1 = 1:0; b1 = 0:14177447

a2 = 4:90138222; b2 = − 13:3407815
a3 =−0:85392910; b3 = − 0:53935618
a4 =−9:94074425; b4 = 10:1578346

(36)

The plots in Figure 19(a) and (b) show the pressure errors and pressure convergence, respec-
tively, for this test case. The pressure convergence for this test case with the grid aligned
along the discontinuity was of the order of h1:23 for quadrature q=0:1. The reported conver-
gence of pressure for this test case in Reference [14] was of the order of h0:24. This result
again demonstrates that a signi�cant improvement in convergence is obtained by exploiting
the family of schemes and using the quadrature point q=0:1. This case is not as smooth as
the previous one and on using gauss quadrature point q=0:2887 the convergence of pressure
for this case was found to be of the order of h0:43 which is less than convergence rate found
for q=0:1.
Example 7: Here, the analytical solution for pressure is also given by Equation (32) and the

domain discontinuity is along the line �=3 as shown in Figure 9(b) with the permeability tensor
Ki= kiI, where ki is a scalar, for 1; : : : ; 4, taking values k1 = 6; k3 = k1 and k2 = 1; k4 = k1.
The grids used to test this were aligned along the discontinuity. The coe�cients that describe
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Figure 19. (a) Numerical pressure on the given domain; and (b) convergence of numerical pressure
for di�erent quadrature points.
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the analytical solution are given by

�=0:51671199

a1 = 1:0; b1 = 0:27735010

a2 = 1:71428571; b2 = − 0:91129318
a3 = 0:32944606; b3 = − 0:98406726
a4 =−0:820074971; b4 = − 1:75974652

(37)

The plots in Figure 20(a) and (b) show the numerical pressure solution and pressure conver-
gence, respectively, for this test case. The pressure convergence for this test case with the
grid aligned along the discontinuity was of the order of h1:051 for quadrature q=0:1 and the
velocity convergence was found to be of the order of h0:52.
A series of other numerical examples were also tested on Cartesian and zig-zag grids with

di�erent values of �; ai and bi over the domains shown in Figure 9(b)–(d). All show the
same trend, i.e. for quadrature point q=0:1 convergence results are the best compared to
other quadrature points.

4.2. Convergence results on unstructured grids

In this section, the family of �ux-continuous schemes is tested on an unstructured grid. This
test case is taken from Edwards and Rogers [1]. For this case the permeability is discontinuous
with a domain discontinuity similar to the one shown in example 1 and is given along the
line x+ y=2=3=4. The grid used for solving the unstructured case is control-volume aligned
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Figure 20. (a) Numerical pressure solution; and (b) numerical convergence of
pressure with variable quadrature points.
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Figure 21. (a) Unstructured grid; (b) exact numerical solution; and
(c) control-volume aligned triangular grid.

as shown in Figure 21(c). The pressure �eld is piecewise linear and is given by

�(x; y)=

{
200=3(x + y=2); x + y=2¡3=4

2=3(x + y=2) + 99=2; x + y=2¿ 3=4
(38)

A full discontinuous permeability tensor is de�ned as

K =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 −1=4

−1=4 1=2

)
; x + y=3¡3=4

(
100 −100=4

−100=4 100=2

)
; x + y=2¿ 3=4

On solving this problem on a unstructured grid with 128 elements shown in Figure 21(a)
the exact solution shown in Figure 21(b) was obtained using the physical space formulation
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for all quadrature points. This veri�es that the family of �ux-continuous schemes is equally
applicable to unstructured grids and is exact for linear problems.

5. USE OF QUADRATURE POINT IN UP-SCALING

Up-scaling of �ne scale information to the coarse (gridblock) scale is commonly performed in
reservoir simulation [5]. The grid block domain is represented by a �ne scale grid over which
�ne scale rock properties are de�ned and standard up-scaling is performed over the domain.
In this section, an example is presented demonstrating the e�ect of di�erent quadrature points
on up-scaling. In this example, the �ne scale permeability �eld is de�ned by four di�erent
values of diagonal permeability tensor

K =Cj

(
1 0

0 1

)

where Cj=(0:01; 1; 0:1; 100) arranged in a 2× 2 con�guration (Figure 22). The standard e�ec-
tive permeability is computed for the successive grid re�nements using a range of quadrature
points. The domain is subjected to no �ow top and bottom (Neumann) boundary conditions,
i.e. u · n1 = 0 and u · n2 = 0 (typical boundary conditions for up-scaling). Dirichlet boundary
conditions are applied to the left and right-hand side of the domain where constant pres-
sures are prescribed such that a global pressure di�erence is imposed across the domain.
A reference solution is computed on a structured 128 × 128 Cartesian grid. Convergence
rates in terms of e�ective permeability K? is shown in Figure 21. For the family of �ux-
continuous schemes use of quadrature point q=0:1 yields the best performance. The standard
CVFE (FEM-Galerkin) is computed for up-scaling subjected to same boundary conditions.
FEM-GAL is seen to converge from above (Figure 23(a)) and the family of �ux-continuous
scheme convergence from below, consistent with harmonic mean up-scaling. A similar prob-
lem is tested on unstructured grid and the up-scaling convergence of K?, obtained in that case
is shown in Figure 23(b). Again we observed the same trend that quadrature q=0:1 yields im-
proved convergence for up-scaling compared to other quadrature points including unstructured
grids.

Figure 22. Domain to be up-scaled with varying permeability.
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Figure 23. (a) Up-scaled permeability on structured grid; and (b) up-scaled
permeability on unstructured grid.

6. CONCLUSIONS

The family of �ux-continuous schemes is shown to be exact on structured and unstructured
grids (for all quadrature points) for problems where pressure is piecewise linear.
For the transform space formulation O(h2) convergence is obtained for the problems where

pressure is piecewise linear and thereby provides a measure of the transform space geometry
approximation error.
More generally, for the cases involving an interior �eld singularity where pressure is

expressed in polar form as a function of � it was found that convergence rate for pressure and
velocity decreases with decreasing �. The numerical experiments show that there is a certain
inverse proportionality between convergence rate and roughness of the coe�cients, smoother
coe�cients tend to yield better convergence, as the coe�cient of roughness increases the
convergence rate decreases. However, from the convergence study it is observed that quadra-
ture point q=0:1 appears to be optimal and results in improved convergence compared to
other quadrature points tested. In particular, signi�cant improvement in convergence rates are
obtained for q=0:1 compared to standard MPFA (q=1). This observation is substantiated
further by performing a convergence study with respect to a standard up-scaling procedure on
structured and unstructured grids.
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